Code: CS4T1

II B.Tech - II Semester – Regular Examinations - JUNE 2015

THEORY OF COMPUTATION (COMPUTER SCIENCE & ENGINEERING)

Duration: 3 hours Marks: 5x14=70

Answer any FIVE questions. All questions carry equal marks

- 1 a) Define set and relation. Discuss operations on sets and properties of a relation.

 6 M
 - b) i) Design Deterministic Finite Automata to accept strings with a's and b's such that number of a's are divisible by 3.

4 M

- ii) Design Non Deterministic Finite Automata to accept set of strings in $(0+1)^*$ such that some two 0's are separated by a string whose length is 4i, for some $i \ge 0$.
- 2 a) Construct Deterministic Finite Automata equivalent to the following Non Deterministic Finite Automata
 7 M

Page 1 of 4

b) Construct the minimum state automata equivalent to the following Finite Automata.

7 M

3 a) Write regular expression for the following over alphabet

{0,1}

- i) All the strings with atleast two 0's.
- ii) All the strings with exactly two 0's.
- iii) All the strings with alternating 0's and 1's.

b) Write equivalent regular expression for the following

Deterministic Finite Automata.

8 M

Page **2** of **4**

- 4 a) Define Grammar. Discuss Chomsky classification of languages with examples? 7 M
 - b) Construct an equivalent Non Deterministic Finite Automata with €-transitions for the following right linear grammar

$$S \rightarrow 0A$$

 $A \rightarrow 10A \mid E$

7 M

- 5 a) Define Context Free Grammar. Construct a Context Free Grammar that generates the set of palindromes over alphabet {a,b}.
 - b) Convert the following Context Free Grammar into equivalent Chomsky Normal Form(CNF)

 7 M

$$S \rightarrow aAbB$$
 $A \rightarrow aA|a$

 $B \rightarrow bB \mid b$

6 a) Define Pushdown Automata(PDA). Design PDA that accepts the language L={WCW^R|W in (0+1)*} by empty stack.

7 M

b) Construct an equivalent PDA for the following context free grammar. 7 M

$$S \rightarrow aAA$$

 $A \rightarrow aS |bS| a$

7 a) Define Turing Machine(TM) model. Design a TM that can accept the set of all palindromes over {0,1}. 8 M

b) Explain in detail representation and types of turing machines.

6 M

8 a) Explain Universal Turing Machine(UTM)?

6 M

b) What are undecidable problems? Explain with examples.

8 M